Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells

Kang Deuk Seo a, Hae Min Song a, Myung Jun Lee a, Mariachiara Pastore b, Chiara Anselmi b, Filippo De Angelis b, Mohammad K. Nazeeruddin c, Michael Grätzel c, Hwan Kyu Kim a, *

a Department of Advanced Materials Chemistry & Centre for Advanced Photovoltaic Materials (ITRC), Korea University, 208 Seochang Jochiwon, Jochiwon, Chungnam 339-700, Republic of Korea
b Istituto CNR di Scienze e Tecnologie Molecolari i/o Dipartimento di Chimica Università di Perugia, via Elce di Sotto 8, I-06123, Perugia, Italy
c Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

A series of coumarin dyes containing a low-band-gap chromophore of ethylenedioxythiophene (EDOT), which comprises a coumarin moiety as the electron donor and a cyanoacrylic acid moiety as electron acceptor in D–π–A chromophores, were developed for use in dye-sensitised solar cells (DSSCs). These coumarin dyes have been used to fabricate DSSCs using 1 M liquid electrolytes and their device performances were compared with that of NNX-2677 as a standard dye. Even though HKK-CM2 and HKK-CM3 have more extended aromatic units than HKK-CM1, the degree of π-conjugation in HKK-CM2 and HKK-CM3 is less efficient than that of HKK-CM1, due to the relatively larger torsion angle between the plane of the donor and that of the acceptor. It is also in a good agreement with Density Functional Theory (DFT) calculations. As a result, a solar cell based on HKK-CM1 sensitiser shows better photovoltaic performance with JSC of 14.2 mA cm⁻², VOC of 0.60 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 6.07% under the standard AM 1.5 irradiation, than HKK-CM2 and HKK-CM3-based solar cells.

Keywords:
Coumarin
Dye-sensitised solar cell
Low-band-gap chromophore
Ethylenedioxythiophene
Molecular orbitals

1. Introduction

Dye-sensitised solar cells (DSSCs) based on mesoporous nanocrystalline TiO₂ films have attracted significant attention due to their low cost and high sunlight-to-electric power-conversion efficiencies of 10–11% [1–4]. In these cells, the sensitisers are one of the key components for high power-conversion efficiency, and the Ru(II) complex is the most efficient heterogeneous charge-transfer sensitisers that is widely used in the nanocrystalline TiO₂-based DSSC [5–9]. However, the main drawback of the Ru(II) complex sensitisers is expensive ruthenium metal and requires careful synthesis and tricky purification steps [10].

In recent years, much interest in metal-free organic dyes as an alternative to noble metal complexes has increased due to many advantages, such as diversity of molecular structures, high molar extinction coefficient, simple synthesis as well as low cost and environmental issues. Metal-free organic dyes such as triarylamine dyes [11–16], hemicyanine dyes [17,18], thiophene-based dyes [19], indoline dyes [20–26], heteropolyacetic dyes [27], porphyrin dyes [28–31], and phthalocyanine [32] dyes, have been developed, and solar-to-electric power-conversion efficiencies have been sharply increasing reaching ca. 10% [33,34]. Although remarkable progress has been made in the organic dyes as sensitisers for DSSCs, it is still needed to optimise their chemical structures for further improvement in performances.

Among the metal-free organic dyes studied in DSSCs, coumarin-based dyes are stuff for TiO₂ kind of promising sensitisers because of their good photosresponse in the visible region, good long-term stability under one sun soaking [35], and appropriate lowest unoccupied molecular orbital (LUMO) levels matching the conduction band of TiO₂. NNX-2677 dye has been used successfully as a photosensitisers in DSSCs and obtained maximum value of up to 7.4% [36]. Though low-band-gap chromophore-based polymers [37–42] have been widely employed in photovoltaic applications, coumarin dyes containing low-band-gap chromophore as structural motifs have not been exploited for DSSCs. Here, we report coumarin dyes containing a low-band-gap chromophore, so-called, 3,4-ethylenedioxythiophene (EDOT) substituted coumarin derivatives, in which an electron-rich EDO unit is connected to a donor group in order to destabilise the energy of the highest occupied molecular orbital (HOMO) in D–π–A chromophores [34,43].

© 2011 Elsevier Ltd. All rights reserved.
2. Experimental

2.1. Materials

All reactions were carried out under a nitrogen atmosphere. Solvents were distilled from appropriate reagents. All reagents were purchased from Aldrich. 9-(5-bromothiophen-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-azabenzo[de]anthracen-10-one [36], 2-tri-butylstannyl-3,4-ethyl-enedioxothiophene [44], 2-tri-butylstannyl-5-dioxolanyli thiophene [45] were synthesised by following the same procedures as described previously.

2.2. Measurement

The 1H NMR spectra were recorded at room temperature with Varian Oxford 300 spectrometers and chemical shifts were reported in ppm units with tetrachloroethane as an internal standard. FT-IR spectra were measured as KBr pellets on a Perkin Elmer Spectrometer. UV–visible absorption spectra were obtained in THF on a Shimadzu UV-2401PC spectrophotometer. Cyclic voltammetry was carried out with a Versa STAT3 (AMETEK). A three-electrode system was used and consisted of a reference electrode (Ag/AgCl), a working electrode, and a platinum wire electrode. Redox potential of dyes on TiO2 was measured in CH3CN with 0.1 M TBAPF6 with a scan rate between 50 mV s−1. The 1H NMR spectra were recorded at room temperature with Varian Oxford 300 spectrometers and chemical shifts were reported in ppm with tetramethylsilane as an internal standard. FT-IR spectra were measured as KBr pellets on a Perkin Elmer Spectrometer. UV–visible absorption spectra were obtained in THF on a Shimadzu UV-2401PC spectrophotometer. Cyclic voltammetry was carried out with a Versa STAT3 (AMETEK). A three-electrode system was used and consisted of a reference electrode (Ag/AgCl), a working electrode, and a platinum wire electrode. Redox potential of dyes on TiO2 was measured in CH3CN with 0.1 M TBAPF6 with a scan rate between 50 mV s−1.

2.3. Density functional theory (DFT)/time-dependent DFT (TD-DFT) calculations

The ground state geometries of the dyes have been optimised, in gas phase, by DFT employing the B3LYP [46] functional and a 6-31G* basis set; only the protonated species have been considered. The vertical excitation energies in THF have been calculated by DFT (TDDFT) calculations and then 13 mL of DMF solution including 0.46 mmol) and cyanoacetic acid (0.07 g, 0.82 mmol) was re dissolved in 10 mL of DMF and then phosphorus oxychloride (0.21 g, 1.37 mmol) was added into the solution, which was then kept at room temperature for 1.5 h. The resulting solution was added to water. After neutralisation with 25% (wt/wt) NaOH solution, the solution was kept at 50 °C for 0.5 h. The mixture was extracted with chloroform and then washed with aqueous saturated NaCl solution and then dried over MgSO4. After filtration and evaporation of the solvent, the resulting precipitate was recrystallised from DMF. Yield was 59%. 1H NMR (300 MHz, CDCl3) δ (TMS, ppm): 1.32 (6H, s), 1.58 (6H, s), 1.75–1.84 (4H, m), 3.25–3.33 (4H, m), 4.43 (4H, s), 7.16 (1H, s), 7.41 (1H, d), 7.60 (1H, d), 7.88 (1H, s), 8.99 (1H, s).

2.4. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H-10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)–3,4-ethylenedioxythiophene-5-yl) acryl acid (HKK-CM1)

An acetonitrile solution (15 mL) of compound 4 (0.25 g, 0.46 mmol) and cyanoacetic acid (0.07 g, 0.82 mmol) was refluxed at 120 °C in the presence of piperidine (0.04 mL) for 6 h. After cooling the solution, the product was purified by chromatography on silica gel (CH2Cl2–MeOH 5:1). Yield was 69%. 1H NMR (300 MHz, CDCl3) δ (TMS, ppm): 1.27 (6H, s), 1.48 (6H, s), 1.70–1.76 (4H, m), 3.27–3.33 (4H, m), 4.53 (4H, s), 7.40 (1H, s), 7.44 (1H, d), 7.66 (1H, d), 8.07 (1H, s), 8.38 (1H, s). UV−vis (THF, nm): λmax (log ε) 532 (52,700). PL (THF, nm): λmax 666. FAB-mass: Calcd. for C31H37O2N2S2, 614.15; found, 614.00.

2.4.4. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H-10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)–5-bromo-3,4-ethylenedioxythiophene (5)

Compound 5 (1.74 g, 3.35 mmol) was dissolved in 20 mL of DMF and then 13 mL of DMF solution including N-bromosuccinimide (0.18 g, 3.43 mmol) was added to the solution, which was then kept for 12 h. Ethanol (60 mL) and water (10 mL) were added and a precipitate of compound 6 was formed. Yield was 56%. 1H NMR (300 MHz, CDCl3) δ (TMS, ppm): 1.36 (6H, s), 1.57 (6H, s), 1.76–1.83 (4H, m), 3.22–3.30 (4H, m), 4.45–4.34 (4H, m), 7.11 (1H, s), 7.13 (1H, d), 7.61 (1H, d), 7.81 (1H, s).

2.4.5. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H-10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)–3,4-ethylenedioxythiophenethyl-5-benzaldehyde (6)

Compound 5 (0.57 g, 0.94 mmol), 4-formyl phenyl boronic acid (0.17 g, 1.13 mmol), Pd(PPh3)4 (0.07 g, 0.06 mmol), Na2CO3 (0.40 g, 3.77 mmol) in H2O were dissolved in 40 mL of solvent (THF and toluene, 1:1) and then kept at 80 °C for 8 h under an inert N2 atmosphere. The mixture was extracted with chloroform and then washed with aqueous saturated NaCl solution and then dried over dehydrated MgSO4. After filtration and evaporation of the solvent, the resulting precipitate was recrystallised from DMF. Yield was 88%. 1H NMR (300 MHz, CDCl3) δ (TMS, ppm): 1.32 (6H, s), 1.58 (6H, s), 1.77–1.82 (4H, m), 3.24–3.31 (4H, m), 4.43 (4H, s), 7.15 (1H, s), 7.26 (1H, d), 7.61 (1H, d), 7.84–7.90 (5H, m), 9.96 (1H, s).

2.4.6. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H-10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)–3,4-ethylenedioxythiophenethyl-5-benzyl-4-yl) acryl acid (HKK-CM2)

An acetonitrile solution (15 mL) of compound 6 (0.51 g, 0.82 mmol) and cyanoacetic acid (0.11 g, 1.29 mmol) was refluxed at 120 °C in the presence of piperidine (0.07 mL) for 6 h. After cooling the solution, the product was purified by chromatography on silica gel (CH2Cl2–MeOH 5:1). Yield was 69%. 1H NMR (300 MHz, CDCl3) δ (TMS, ppm): 1.27 (6H, s), 1.58 (6H, s), 1.70–1.76 (4H, m), 3.26–3.33 (4H, m), 4.43 (4H, s), 7.33 (1H, d), 7.42 (1H, s), 7.64 (1H, d), 7.69 (2H, d), 8.03 (2H, d), 8.22 (1H, s), 8.32 (1H, s). UV−vis (THF, nm): λmax (log ε) 509 (67,200). PL (THF, nm): λmax 597. FAB-mass: Calcd. for C32H30N2O5S2, 690.19; found, 690.00.
2.4.7. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)-3,4-ethylenedioxythiopheneyl-5-thiophenylaldehyde (8)

A mixture of compound 5 (0.54 g, 0.91 mmol), compound 7 (0.60 g, 1.35 mmol) and Pd(PPh3)₄ (0.08 g, 0.07 mmol) was heated in dry THF 100 ml at 80 °C for 24 h under an inert N₂ atmosphere. After concentration, the residue was dissolved in CH2Cl2. The organic phase was washed twice with a saturated solution of NaHCO₃ and then with water. After drying over MgSO₄ and evaporating the solvent, the product was suspended in glacial acetic acid (25 ml) and heated at 50 °C for 5 h. The mixture was cooled and added to ice water. The resulting orange precipitate formed was filtered and washed with water and methanol. The compound 10 was recrystallised from DMF. Yield was 52%. ¹H NMR (300 MHz, CDCl₃) δ (TMS, ppm): 1.32 (6H, s), 1.58 (6H, s), 1.77–1.82 (4H, m), 3.24–3.32 (4H, m), 4.43 (4H, s), 7.15 (1H, s), 7.23–7.28 (2H, m), 7.60–7.67 (2H, m), 7.84 (1H, s), 9.84 (1H, s).

2.4.8. Preparation of 5-((1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo[de]anthracen-9-yl)-thiophene-2-yl)-3,4-ethylenedioxythiopheneyl-5-thiophenylaldehyde (9)

An acetonitrile solution (20 ml) of compound 8 (0.30 g, 0.48 mmol) and cyanoacetic acid (0.07 g, 0.76 mmol) was refluxed at 120 °C in the presence of piperidine (0.05 ml) for 6 h. After cooling the solution, the product was purified by chromatography on silica gel (CH₂Cl₂–MeOH 5:1). Yield was 76%. ¹H NMR (DMSO-d₆) δ (TMS, ppm): 1.26 (6H, s), 1.49 (6H, s), 1.70–1.77 (4H, m), 3.26–3.32 (4H, m), 4.54 (4H, s), 7.33 (1H, s), 7.37 (1H, d), 7.40 (1H, s), 7.69 (1H, d), 7.88 (1H, d), 8.31 (1H, s), 8.37 (1H, s), 7.33 (1H, d), 7.42 (1H, s), 7.64 (1H, d), 7.83 (2H, d), 8.03 (2H, d), 8.22 (1H, s), 8.32 (1H, s), UV–vis (THF, nm): λmax (log ε) 527 (50,400), PL (THF, nm): λmax 620, FAB-mass: Calcd. for C₇H₁₂N₂O₃S₅, 696.14; found,696.00.

2.5. Fabrication and testing of DSSC

FTO glass plates (Pilkington) were cleaned in a detergent solution using an ultrasonic bath for 1 h, rinsed with water and ethanol. The FTO glass plates were immersed in an aqueous solution of 40 mM TiCl₄ at 70 °C for 30 min and washed with water and ethanol. The first TiO₂ layer of 8 µm thickness was prepared by screen printing TiO₂ paste (Solaronix, 13 nm anatase), and the second scattering layer containing 400 nm sized anatase particles was deposited by screen printing. The TiO₂ electrodes were immersed into the dye solution (0.3 mM in ethanol/THF (1:1) with DCA (10 mM)) and kept at room temperature overnight. Counter electrodes were prepared by coating with a drop of H₂PtCl₆ solution (2 mg of Pt in 1 ml of ethanol) on an FTO plate. The dye-adsorbed TiO₂ electrode and Pt-counter electrode were assembled into a sealed sandwich-type cell. A drop of electrolyte was then introduced into the cell, which was composed of 0.6 M 1,2-dimethyl-3-propyl imidazolium iodide, 0.05 M iodine, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile. It was introduced into the inter-electrode space from the counter electrode side through predrilled holes. The drilled holes were sealed with a microscope cover slide and Surlyn to avoid leakage of the electrolyte solution.

2.6. Photoelectrochemical measurements of DSSC

Photoelectrochemical data were measured using a 1000 W xenon light source (Oriel, 91193) that was focused to give1000 W m⁻², the equivalent of one sun at Air Mass (AM) 1.5, at the surface of the test cell. The light intensity was adjusted with a Si solar cell that was double-checked with an NREL-calibrated Si solar cell (PV Measurement Inc.). The applied potential and measured current cell were measured using a Keithley model 2400 digital source metre. The current–voltage characteristics of the cell under these conditions were determined by biasing the cell externally and measuring the generated photocurrent. This process was fully automated using WaveMetrics software.

3. Results and discussion

The synthetic procedures of the coumarin dyes containing EDOT are depicted in Scheme 1. Coumarin aldehyde derivatives were synthesized by either a Suzuki or Stille coupling reaction. These aldehydes, on reaction with cyanoacetic acid in the presence of piperidine catalyst, produced a series of coumarin dyes of HKK-CM1-3, presented here.

Fig. 1 shows the absorption and emission spectra of coumarin dyes measured in THF solution and their photophysical properties are summarised in Table 1. The calculated TDDFT absorption wavelengths, together with the corresponding oscillator strengths, are reported in Table 2. The absorption spectrum of the HKK-CM1 dye with the incorporation of an EDOT unit into a bithiophene-containing coumarin dye of NKX-2677 to up-lift its HOMO level and down-shift its LUMO level, shows the maximum absorption of 532 nm (ε = 52,700 M⁻¹ cm⁻¹), which is 18 nm red-shifted in contrast to NKX-2677. In excellent agreement with experiment, a small red shift is also predicted by TDDFT with εmax of 519 (HKK-CM1) and 513 (NKX-2677) nm. Under a similar condition, the HKK-CM3 dye exhibits the maximum absorption peak at 527 nm (ε = 60,400 M⁻¹ cm⁻¹). Obviously, with the introduction of the EDOT, the charge-transfer transition absorption is not only red-shifted but also its absorption molar extinction coefficient is enhanced, due to extended π-conjugation. As shown in Table 2, for HKK-CM3, the first absorption maximum is computed at 543 nm with a larger oscillator strength (2.202) with respect to those of HKK-CM1 (1.839) and NKX-2677 (1.857). But, the HKK-CM2 dye exhibits the maximum absorption peak at 509 nm (ε = 67,200 M⁻¹ cm⁻¹), which is 5 nm blue-shifted in contrast to NKX-2677; a comparable shift to shorter wavelengths is also computed by TDDFT, which locates the first absorption band at 511 nm with an oscillator strength of 2.268. This increase in the excitation energy of HKK-CM2 can be ascribed to the relatively larger torsion angle (ca. 9° at B3LYP/6-31G* level) between the plane of the donor and that of the acceptor, induced by the presence of the phenyl fragment, ensuring less efficient electronic communication between the donor and the acceptor. In contrast, the absorption spectra of coumarin dyes adsorbed on the TiO₂ surface are remarkably broadened relative to the absorption spectra of the solution state. This might be due to dye–dye and/or dye–TiO₂ interactions [50]. In addition, it should be addressed that a series of coumarin dyes of HKK-CM1-3 adsorbed on the TiO₂ films has a broader and better absorption band than that of NKX-2677 as a standard dye.

The electrochemical properties were investigated by cyclic voltammetry (CV) to obtain HOMO and LUMO levels of the present dyes. The cyclic voltammogram curves were obtained from a three-electrode cell in 0.1 M TBAIPE₆ in CH₂CN at the scan rate of 50 mV/s, using a dye-coated TiO₂ electrode as a working electrode and Pt wire counter electrode and Ag/AgCl (saturated KCl) reference electrode (0.197 V vs NHE) and calibrated with ferrocene. All of the measured potentials were converted to the NHE scale. The band gap was estimated from the absorption edges of UV–vis spectra and LUMO energy levels were derived from HOMO energy levels and the band gap. HOMO values (0.93–1.02 V vs NHE) are more positive than the 1/e redox couple (0.4 V vs NHE). The electron injection from the excited sensitisers to the conduction band of...
TiO\textsubscript{2} should be energetically favourable because of the more negative LUMO values (−1.13 to −1.24 vs NHE) compared to the conduction band edge energy level of the TiO\textsubscript{2} electrode [51]. As shown in Fig. 3, HKK-CM1 only exhibits the lifted HOMO level, since it is well known that an EDOT electron-rich EDOT unit is 300 400 500 600 700 800 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 400 500 600 700 800 0.0 0.5 1.0 1.5 2.0 Abs. Wavelength (nm) HKK-CM1 HKK-CM2 HKK-CM3 NKX-2677 Fig. 1. Absorption and emission spectra of 2 × 10−3 M coumarin dyes in THF (inset: dyes adsorbed on TiO\textsubscript{2} films).

Table 1

<table>
<thead>
<tr>
<th>Dye</th>
<th>λ\textsubscript{abs}/nm</th>
<th>E\textsubscript{ex}/V</th>
<th>E\textsubscript{o,f}−E\textsubscript{0,0}/eV</th>
<th>E\textsubscript{LUMO}/V</th>
<th>J\textsubscript{sc} (mA cm−2)</th>
<th>Voc (V)</th>
<th>FF (%)</th>
<th>\eta (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKK-CM1</td>
<td>532 (52,700)</td>
<td>0.93</td>
<td>2.06</td>
<td>−1.13</td>
<td>14.2</td>
<td>0.60</td>
<td>0.70</td>
<td>6.07</td>
</tr>
<tr>
<td>HKK-CM2</td>
<td>509 (67,200)</td>
<td>0.99</td>
<td>2.23</td>
<td>−1.24</td>
<td>10.5</td>
<td>0.62</td>
<td>0.57</td>
<td>3.73</td>
</tr>
<tr>
<td>HKK-CM3</td>
<td>527 (60,400)</td>
<td>1.02</td>
<td>2.15</td>
<td>−1.13</td>
<td>13.3</td>
<td>0.57</td>
<td>0.56</td>
<td>4.37</td>
</tr>
<tr>
<td>NKX-2677</td>
<td>514 (59,900)</td>
<td>0.95</td>
<td>2.17</td>
<td>−1.18</td>
<td>16.1</td>
<td>0.64</td>
<td>0.70</td>
<td>7.19</td>
</tr>
</tbody>
</table>

a Absorption and emission spectra were measured in THF.

b Oxidation potentials of dyes on TiO\textsubscript{2} were measured in CH\textsubscript{3}CN with 0.1 M TBAPF\textsubscript{6} with a scan rate of 50 mV s−1 (vs NHE).

c E\textsubscript{0,0} was determined from the intersection of absorption and emission spectra in THF.

d LUMO was calculated by E\textsubscript{ex}−E\textsubscript{o,f}.

Scheme 1. Chemical structures and synthesis of coumarin dyes containing EDOT.
connected to donor group in D−π−A chromophores and destabilised the energy of the HOMO to be lifted [34,43]. In contrast, it was surprising that HKK-CM2 and HKK-CM2 exhibit the lowered HOMO level. To gain more insight of their photophysical behaviour adsorbed on TiO2 films, theoretical analysis (DFT, B3LYP/6-31G* level) on the molecular orbitals involved in the transitions was carried out, and the resulting frontier orbitals are depicted in further density functional B3LYP/3-21G* calculations performed for three compounds. Fig. 2 shows the dominant electron density change for the HOMO-LUMO transition is that the electrons transfer from the coumarin unit to acrylic acid moiety in D−π−A chromophores.

Fig. 4 shows the incident monochromatic photon-to-current conversion efficiency (IPCE) of the coumarin dyes sensitised. The onset wavelengths of the IPCE spectra for DSSCs based on HKK-CM2 and HKK-CM3 were >800 nm. IPCE values of higher than 70% were observed in the range of 410–605 nm with a maximum value of 78% at 500 nm for the DSSC based on HKK-CM1. The maximum IPCE value of the DSSC based on HKK-CM2 and HKK-CM3 are slightly lower than the efficiencies of the DSSCs based on HKK-CM1.

But, all maximum IPCE values of the DSSC based on the presented coumarin dyes are lower than that of the DSSCs based on NKX-2677, even though a series of coumarin dyes of HKK-CM1-3 adsorbed on the TiO2 films has a broader and better absorption band than that of NKX-2677 as a standard dye (see Fig. 1). The lower IPCE values of the DSSC based on HKK-CM2 and HKK-CM3 are probably due to extended π-conjugation elongation, which might lead to decreased electron-injection yield relative to that of HKK-CM1 dye [36].

The photovoltaic performances of the coumarin DSSCs were summarised in Table 1. Under the standard global AM 1.5 solar condition, the HKK-CM1 sensitised cell gave a short circuit photocurrent density (JSC) of 14.2 mA cm−2, open circuit voltage (VOC) of 0.60 V, and a fill factor (FF) of 0.70, corresponding to an overall conversion efficiency 6.07%. The HKK-CM2 sensitised cell gave a JSC of 10.5 mA cm−2, VOC of 0.62 V, and FF of 0.57, corresponding to an overall conversion efficiency of 3.73% and the HKK-CM3 sensitised cell gave a JSC of 13.3 mA cm−2, VOC of 0.57 V, and FF of 0.56, corresponding to an overall conversion efficiency η of 4.37%.

Table 2

<table>
<thead>
<tr>
<th>Dye</th>
<th>λmax (nm) (Exp.)</th>
<th>λmax (nm) (Theor.)</th>
<th>ε/M cm−1</th>
<th>Osc. Strength (Theor.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKK-CM1</td>
<td>532</td>
<td>519</td>
<td>52,700</td>
<td>1.839</td>
</tr>
<tr>
<td>HKK-CM2</td>
<td>509</td>
<td>511</td>
<td>67,200</td>
<td>2.268</td>
</tr>
<tr>
<td>HKK-CM3</td>
<td>527</td>
<td>543</td>
<td>60,400</td>
<td>2.202</td>
</tr>
<tr>
<td>NKX-2677</td>
<td>514</td>
<td>513</td>
<td>59,900</td>
<td>1.857</td>
</tr>
</tbody>
</table>

Fig. 2. Plots of the isodensity surfaces (MPW1K/6-31G* in THF) of HOMOs and LUMOs of HKK-CM1, HKK-CM2 and HKK-CM3.

Fig. 3. Overview of the evaluated energy levels of coumarin dyes determined by cyclic voltammetry.

Fig. 4. Typical action spectra of incident photon-to-current conversion efficiencies (IPCE) obtained for nanocrystalline TiO2 solar cells sensitized by coumarin dyes.
Coumarin dyes containing low-band-gap chromophore have been designed and synthesized. Surprisingly, even though the dye gave the broadest light harvesting range. The phenylene unit in HKK-CM2 may also lead to a twisted intramolecular charge-transfer geometry of the dye excited state, which would decrease the excited-state energy and cause a lower efficiency of electron injection as reported previously [52].

4. Conclusions

Coumarin dyes containing low-band-gap chromophore have been designed and synthesized. Surprisingly, even though HKK-CM2 and HKK-CM3 have more extended aromatic units than HKK-CM1, the degree of π-conjugation in HKK-CM2 and HKK-CM3 is less efficient than that of HKK-CM1, due to the relatively larger torsion angle between the plane of the donor and that of the acceptor. As a result, a solar cell based on HKK-CM1 sensitizer shows better photovoltaic performance with JSC of 14.2 mA cm$^{-2}$, VOC of 6.07% under the standard AM 1.5 irradiation, than HKK-CM2 and HKK-CM3-based solar cells. The lower IPCE values of the DSSCs based on HKK-CM2 and HKK-CM3 are probably due to extended π-conjugation elongation, which might lead to decreased electron-injection yield relative to that of HKK-CM1 dye.

Acknowledgements

This research was supported by MKE (The Ministry of Knowledge Economy), Korea, under the ITRC support program supervised by the IITA (Institute for Information Technology Advancement) (IITA-2008-C1090-0804-0013), WCU (the Ministry of Education and Science) program (R31-2008-000-10035-0) and Converging Research Center Program through the Ministry of Education, Science and Technology (2010K000973).

Appendix. Supplementary material

Supplementary data related to this article can be found online at doi:10.1016/j.dyepig.2011.01.009.

References

